
A Database Schema For the Representation of
JMdict Data

by Stuart McGraw <jmdictdb@mtneva.com>

This note describes how JMdict data[1] is represented in the database developed for
the JMdictDB project[2]. It assumes the reader understands how JMdict data is
represented in the JMdict XML file[3] and the basics of relational database design.

Source code to create, load, and access a JMdict database is available at the JMdictDB
project website[4]. The current implementation uses Postgresql[5] and the schema
makes use of many Postregsql specific features.

The scripts that create the database (and are thus the ultimate authority regarding the
schema) are available in the source code distribution in directory db/. The tables
described in this document are defined in entrobjs.sql; it contains many comments
and replaces the annotated schema that was part of earlier versions of this document.
Additionally mktables.sql defines a number of supporting tables and other objects.
mkviews.sql defines views that the JMdictDB code accesses like tables.

A relationship diagram of the core schema tables is available in the file
schema.png[6].

This document focuses on the core schema objects that support the representation of
JMdict and JMnedict XML. The schema also contains tables and other objects for
ancillary purposes such as verb/adjective conjugation, representation of the contents
of the Kanjidic2 XML and Examples data files, etc., but they are not described here at
present.

Table of Contents
1. Schema Description...3

1.1. Parent/Child Tables and Primary/Foreign keys..3
1.2. Keyword Tables..5
1.3. Keyword Lists...6
1.4. Restrictions: restr, stagr, stagk..6
1.5. Frequency of Use: ke_pri, re_pri..7
1.6. Cross-references: xref...7
1.7. Unresolved cross-references: xresolv...8
1.8. Corpora and Sequence Numbers..8
1.9. XML Round-tripping..8

2. An Example Entry...11
3. Using SQL..15

3.1. Retrieving an Entry's Data..15
3.2. Finding Entries...16
3.3. Views..17
3.4. More details..17

 Notes...18

Stuart McGraw, 2020-09-05 Page 1 of 18

Stuart McGraw, 2020-09-05 Page 2 of 18

1. Schema Description
Roughly, each element type in the JMdict XML is modeled by a separate table in the
database. The hierarchical structure of the XML is mirrored by the tables being
linked in parent-child relationships using foreign keys in child tables that refer to the
primary keys of parent tables. Table entr is at the top of the hierarchy and each row
in entr corresponds to an <entry> element in the JMdict XML.

The correspondence of tables and JMdict XML elements is not absolute however; in
some cases where no more than one sub-element is possible, the sub-element's
information may be contained in a column of the table corresponding to the
containing element. In some cases the JMdict XML semantics have been modified to
better fit relational data semantics, or to allow more representational capabilities.

1.1. Parent/Child Tables and Primary/Foreign keys.

Each JMdict entry is represented by a row in table entr and each row has a integer
field id containing an arbitrary but unique integer that identifies the row (and the
entry). Each entr row contains some information about its entry, but most of the
entry's information (for example readings or senses) is in other tables connected to the
entr table by primary key / foreign key relationships.

Each of these "child" tables has a column entr that is a foreign key to the primary key
column id in their parent table, entr (abbreviated entr.id). It is primary key / foreign
key relations like this that tie together all the information for a single entry even
though that information is distributed over multiple tables. In addition, the child tables
of entr have another column, usually given the same name as the table itself, whose
value is a small integer that serves to both disambiguate the child table's rows within
the entry, and to order them. Thus, the table sens has two columns, entr, and sens, and
all rows representing senses of a given entry will have the same value in the entr field,
and values like 1, 2, 3, etc, in the sens field. The entr and sens columns together form
the primary key of the sens table.

Some of the child tables in turn have their own child tables. The table gloss is a child
table of sens. It has columns entr and sens which relate its rows to particular senses in
table sens, and a column gloss to disambiguate and order the glosses within each
sense. The table's primary key consists of the columns entr, sens, gloss.

The entr.id numbers are used by the database to connect rows to related rows in other
tables. They can change over time and will probably be different in different database
instances, and thus should never be saved outside the database as row identifiers.

The following table shows the database tables as a hierarchy with parent-child
relationships denoted by indentation of the table names

Stuart McGraw, 2020-09-05 Page 3 of 18

Table 1: Entr database tables hierarchy

Database table
name

JMdict XML element Information

entr <entr> Entries

 hist <audit> Entry change history

 kanj <ke_ele>, <keb> Kanji text

 kinf <ke_inf> Kanji supplementary info

 rdng <re_ele>, <reb> Reading (kana) text

 rinf <re_inf> Reading supplementary info

 sens <sense>, <s_info> Sense

 pos <pos> Part-of speech

 misc <misc> Misc. sense info

 fld <field> Field of use

 gloss[7] <gloss> English and other language translations

 dial <dial> Dialect

 lsrc <lsource> Source language and word

 xresolv <xref>, <ant> Unresolved cross-references to other
entries.

There are some tables that have two parents and thus don't fit neatly into the
hierarchical picture above:

 restr <restr> Invalid reading-kanji pairs. [parents:
(rdng, kanj)]

 stagr <stagr> Invalid sense-reading pairs. [parents:
(sens, rdng)]

 stagk <stagk> Invalid sens-kanji pairs. [parents: (sens,
kanj)]

 freq <re_pri>, <ke_pri> Frequency-of-use info for reading and
kanji elements. [parents: (rdng, kanj)]

Stuart McGraw, 2020-09-05 Page 4 of 18

 xref <xref>, <ant> Cross-references to other entries. [parents:
(sens, sens)]

The table xref has two parents, both senses. The first is the sense the cross-reference is
from, and the second, the sense (in a different entry) the cross-reference is to. Because
the senses exist in different entries, the xref table uses the columns
(entr,sens,xentr,xsens) to form the foreign keys (entr,sens) and (xentr,xsens) for the
"from" and "to" senses respectively.

1.2. Keyword Tables

In the JMdict XML file, XML entities and abbreviations are used to encode
reoccurring text strings. For example the entity "&io;" stands for its longer form,
"irregular okurigana usage".

In the database, small integers are used for this purpose. Each set of related keywords
is placed in its own table, and other tables that need to refer to a keyword store the
appropriate id number. The keyword tables are all named with the prefix "kw" and we
sometimes collectively refer to them as "the kw* tables". (Such tables are also
sometimes called "lookup tables" in database literature.) We also use the words
“keyword” and “tag” somewhat interchangeably, although the former tends to occur
in the context of the database, and the latter in the context of the JMdict XML.

Here are the contents of the kwkinf table, which contains the keywords used in the
kinf table (which in turn corresponds to the <ke_inf> elements in the JMdict XML
file).

select * from kwkinf;
id | kw | descr
---+----+---------------------------------------
1 | iK | word containing irregular kanji usage
2 | io | irregular okurigana usage
3 | oK | word containing out-dated kanji
4 | ik | word containing irregular kana usage

kw* tables that correspond to entities and abbreviations used in JMdict xml are:
kwdial, kwfld, kwfreq, kwkinf, kwlang, kwmisc, kwpos, kwrinf. There are several kw*
tables that don't correspond to anything in JMdict: kwsrc, kwstat, kwxref.

The keyword tables' primary function is to enforce the use of valid keyword values in
other tables by means of referential integrity. For this purpose only the values in the
keyword tables' id columns are significant. The kw and descr texts are available for
the use of applications to use for display, but applications are free to map their own
texts to the keyword id numbers.

The keyword tables are colored green in the schema diagram.

Stuart McGraw, 2020-09-05 Page 5 of 18

1.3. Keyword Lists

Some information in JMdict and the database are essentially lists of keywords. For
example, a kanji text might have one of more keywords from the kinf table attached to
it. These lists are stored in tables that have a foreign key to the table with the elements
the list is attached to, and a foreign key to the appropriate keyword table. For example
table kinf holds the ke_inf tags for the kanji elements. It has columns (entr, kanj, ord,
kw). entr and kanj together identify a specific kanji element that a keyword applies
to, and kw identifies the appropriate ke_inf keyword in table kwkinf. The ord column
contains a small integer and is used to maintain the order of the items in the list.

A few keyword list tables have some other information in addition to the keywords.
The table freq for example contains freq keywords, and also a numeric value
associated with each.

The tables that contain such keyword lists are: dial, fld, freq, kinf, misc, pos, rinf.

Not all references to the kw* tables occur from these keyword list tables though. In
some cases where only one instance of a tag is possible, a reference may occur from
one of the other tables. For example, the gloss table contains a column lang that
references kwlang, This is appropriate since a gloss can never have more than one
language tag.

The use of integers rather that the short text strings for keywords might seem
cumbersome initially, but in practice, one quickly learns the equivalences. This
separation allows the short and long text, which is really only relevant for display to
users, to change, while the numeric id values, relevant to application code, remain
invariant. Application code seldom needs to execute joins with the kw* tables,
because they will usually read the keyword tables into memory at startup and resolve
numeric id's to strings (and the reverse) programmatically using the in-memory tables.
Finally, if one really does want to work with the text strings in joins, it is easy to
define views on the keyword list tables that have the kw* tables pre-joined and
present an additional column containing the keyword text.

The keyword list tables are colored yellow in the schema diagram.

1.4. Restrictions: restr, stagr, stagk

In the JMdict XML file, the <re_restr>, <stagr> and <stagk> elements describe
restrictions on the use of reading-kanji, sense-reading, and sense-kanji (respectively)
pairs by enumerating the valid pairs.

In the database, those restrictions are given by listing invalid pairs in the tables restr,
stagr and stagk. Although this creates an impedance mismatch when displaying such
information (which will generally be displayed as valid combinations), it is more
consistent, simplifies queries that incorporate this information, and eliminates the
need for explicitly representing related information such as the <re_nokanji> element.

The restriction tables are colored light blue in the schema diagram.

Stuart McGraw, 2020-09-05 Page 6 of 18

1.5. Frequency of Use: ke_pri, re_pri

The ke_pri and re_pri elements in the JMdict XML are used to convey information
about frequency-of-use metrics using values such as "ichi1", "ichi2", "ns14", etc.
Rather than mimicking JMdict's keyword based approach, the database schema
generalizes the notion of frequency-of-use by using a scale indicator such as "ichi" or
"nf", and a metric such as "1", "14", etc. Thus "ichi1" is replaced by the keyword,
value pair ("ichi",1) and "nf14" by ("nf",14). This allows for the inclusion of other
metrics in the future.

In the database we represent ke_pri and re_pri elements in table freq. In each row the
columns rdng and kanj reference a reading or a kanji but one or the other must be
NULL thus restricting each row to a frequency metric for a single reading or a single
kanji. Two other columns are kw which identifies the scale (by referring to table
kwfreq), e.g. "nf", and value that gives the metric, e.g. 34, on the scale.

1.6. Cross-references: xref

In the JMdict XML file, there are two kinds of cross references, <xref> ("see also")
and <ant> ("antonym"). Both are located within senses, and specify the target of the
cross-ref as a kanji or reading text string. This effects sense→entry cross references,
and, since there is no guarantee that a kanji or reading string will uniquely identify a
single entry, may also be a one-to-many reference.

In the database both (and possibly other) kinds of cross references are modeled in
table xref. As in the JMdict XML, cross references occur within senses, which is
represented in the xref table using columns entr and sens to identify the originating
sense. Since the order of xrefs is significant, the column xref orders the xrefs in a
sense. Differing from the JMdict XML which identifies the target of a cross reference
by kanji and/or reading text, the xref table specifies the target of the cross-reference as
a another entry-sense pair, xentr and xsens which results in each cross-reference
pointing to a specific sense in one specific entry rather than an entire entry (or set of
entries). If a cross-reference to multiple senses or multiple entries is wanted, multiple
rows in the xref table are used. Those five columns (entr,sens,xref,xentr,xsens)
constitute the xref table's primary key.

Table xref also has a column typ that gives the type of cross-reference (synonym,
antonym, see also, etc.) and whose values are defined in table kwxref. (which may
define more types than are used in the JMdict XML.) Column typ is not part of the
primary key; therefore a sense could have multiple xrefs pointing to the same cross-
referenced sense that are identical in every way except the xref value.

It is sometimes desirable to display a cross-reference using a reading and kanji other
than the entry's first reading and kanji. The columns rdng and kanj point to the most
appropriate values for display.

The cross reference table is colored purple in the schema diagram.

Stuart McGraw, 2020-09-05 Page 7 of 18

1.7. Unresolved cross-references: xresolv

There is no guarantee that an an entry matching an XML <xref> or <ant> element
exists in the XML file or database. This is often the case when loading XML data into
the database when the entry referred to has not been read yet. Nor is there any
guarantee that an <xref> or <ant> element uniquely identifies a single entry – it could
match several.

The database schema therefore provides a table, xresolv, which is used for
“unresolved” cross references into which cross reference items are inserted when
initially loading XML data. After the data has been loaded, a second program,
xresolv.py, is run which will attempt to identify a single entry that each row in xresolv
refers to, create one or more rows in table xref pointing to it, and delete the row from
table xresolv. Unresolvable (because there are no or multiple matching entries) xrefs
are left in table xresolv after xresolv.py completes.

1.8. Corpora and Sequence Numbers

As mentioned, each entry (row in table entr) has a unique id number that is (usually)
automatically assigned when an entry is created and uniquely identifies the entry
within the database. Entries are also identified by their corpus (entr.src) and sequence
number (entr.seq). This pair though may not be unique since there may be several
such entries when edited copies of an entry are created. However, there will be at
most one such entry that is “approved” (has a entr.unap value that is False) and
normally only approved entries are exported into XML.

The corpora to which entries are assigned are defined in table kwsrc. Each corpus has
some other attributes such as a short abbreviation (.kw), a long description (.descr)
and a “type” (.srct) which is a reference to table kwsrct and associates corpora into
groups that have certain shared requirements for things like display or editing.

Sequence numbers are automatically assigned when an entr row is created without an
explicit seq number assigned. This is done by Postgresql trigger. Each corpus has its
own sequence number generator that is implemented as a Postgresql sequence [8].
The trigger will look in kwsrc.seq for the name of the Postgresql sequence to use to
get the next available sequence number for the corpus the entry belongs to.

There is also a trigger on the kwsrc table that will automatically create the sequence
for a corpus when a new corpus is added by inserting a new row in table kwsrc. The
sequence will be created with minimum, maximum and increment values
corresponding to the .smin, .smax and .sincr values in the new kwsrc row, Note that
these values are only used when creating the sequence (which in turn happens only
when a new row is inserted in kwsrc); changes made to these values after the
sequence was created will have no effect. The sequence will be named “seq_”
followed by the string given in kwsrc.seq something. When a kwsrc row is deleted
the trigger will automatically delete the associated sequence.

1.9. XML Round-tripping

The module “fmtxml.py” will generate XML from an entry object read from the

Stuart McGraw, 2020-09-05 Page 8 of 18

database. There may be differences between this regenerated XML and the original
JMdict file XML that produced the database entry. The following are things I am
aware of that may differ:

• Comments in the XML are not preserved so cannot be regenerated.[9]

• Element order may vary. Although elements are generated in the order defined by
the JMdict DTD, when there are multiple successive elements of the same type,
order may not be the same as in the original XML in some cases. The following
elements will retain the original order: k_ele, r_ele, sense, gloss, k_inf, r_inf, pos,
misc, field, dial, lsource, audit. The order of re_restr, stagr, stagk, ke_pri, and
re_pri elements may differ. Entry elements in the current JMdict are in seq number
order and can be regenerated in that order. Were that order to change though, it
would not be preserved in the regenerated XML.

• Regenerated XML takes advantage of default values when possible. If the source
XML redundantly specifies a default value (xml:lang=”eng” for example) it will
not be reproduced in the regenerated XML.

• An xref in the database always refers to a specific target entry, and a single sense in
that entry. An xref in the XML may or may not specify a target entry's sense.
When the target entry has multiple senses, but the XML fails to give any senses, the
XML importer will generate multiple xref's, one to each target sense. If the XML
exporter sees a set of xrefs pointing to every sense of a target entry, it will assume
the input XML did not specify any senses and generate an <xref> element with no
sense numbers. However the source XML may have explicitly listed every sense
number of the target entry. This is a particular problem when the number of target
senses is one. (That is, xrefs of the form <xref>供・ともとも</xref> and <xref>供・ともとも・とも
(1)</xref> will both result in <xref>供・ともとも</xref> when the XML is regenerated,
assuming the target entry has only one sense.)

• Duplicate tags are filtered out during importing from XML and will not be
produced in the regenerated XML. In particular, some JMdict entries have had
multiple <k_pri> or <re_pri> tags at times.

• When <ke_pri> or <re_pri> conflict, that is, there are two tags with the same scale
(text value) but different numerical values (e.g. “nf09” and “nf14”, or “ichi1” and
“ichi2”) that apply to the same reading and kanji pair, the one with the lower value
is used in the database, the one with the higher value is discarded and thus won't
appear in the regenerated XML. Note this only applies to freq values associated
with the same reading, kanji pair: if R1 has “nf09”, “nf14”, K1 has “nf09”, and K2
has “nf14”, nothing is discarded because the two freq values are associated with
different pairs (R1,K1, and R1,K2).

• The database can represent information that currently has no means of
representation in XML with the standard JMdict DTD. Specifically:

• Some tables provide for additional information such as notes, status, parent in
the entr table, or email, refs, notes in the hist table (maps to the <audit>
XML element) that JMdict does not support.

Stuart McGraw, 2020-09-05 Page 9 of 18

• Cross-references refer to a specific entry even when there multiple references
with the same reading or kanji text.

• Cross-references may have more types that just the “see also” and “antonym”
types available in the current JMdict XML.

• Readings can have sound clips.

If entries are created that make use of these capabilities, the additional information
will not be representable in a regenerated JMdict XML file.

Stuart McGraw, 2020-09-05 Page 10 of 18

2. An Example Entry
This section looks at the actual table data used to store a JMdict entry, using data
extracted from a live database.

Here is entry 1211370 as displayed by wwwjdic (circa 2008):

堪能(P); 勘能 【たんのうたんのう(堪能)(P); かんのう(ok)】 (adj-na) (1) proficient;
skillful; (n,vs) (2) satisfaction; (n,vs) (3) {Buddh} fortitude; (P)

And here is its representation in the JMdictDB database:

Table entr row:

select * from entr where seq=1211370;
id | src | stat | seq | dfrm | unap | notes
------+-----+------+---------+------+------+-------
20894 | 1 | 2 |1211370 | | F |

id is an arbitrary number as assigned when the entry was created. Its purpose is to
provide an anchor that related rows in other tables can refer to. Since it may change
over time and may be different in different database instances, it should never be
saved externally as a means of identifying an entry; use seq for that.

src says what collection of entries (“corpus”) this entry belongs to and refers to table
kwsrc.id. id=1 in kwsrc says this entry is part of JMdict. Currently in the EDRDG
implementation of JMdictDB all entries are either JMdict or JMnedict entries but in
other database implementations, one could find other corpora such as the Totoeba
“examples” sentences, Kanjidic2 entries or custom site-specific corpora.

stat gives that status of this entry. It refers to table kwstat and id=2 in that table is
"active". There are other stat values for deleted and rejected entries.

seq is the same as the <ent_seq> element in JMdict XML file and identifies each
JMdict entry across time and space within a corpus.

dfrm and unap are used for managing edits and new submissions. dfrm is a reference
to the id number of the "parent" entry when an edited entry is submitted. unap is a
boolean flag indicating the entry is waiting for approval by an editor.

notes is a text field that can contain arbitrary information pertaining to an entry that is
intended to be displayed to users.

Stuart McGraw, 2020-09-05 Page 11 of 18

Table rdng rows

select * from rdng where entr=20894;
entr | rdng | txt
------+------+----------
20894 | 1 | たんのう
20894 | 2 | かんのう

entr identifies the entry the row belongs to. rdng disambiguates and orders multiple
readings belonging to the same entry. entr and rdng together constitute the primary
key and any other tables that refers to specific readings (such as restr will contain a
foreign key to these two columns. txt is the reading text. It is expected to have at least
one kana character and should not contain any kanji characters.

Table kanj rows

select * from kanj where entr=20894;
entr | kanj | txt
------+------+------
20894 | 1 | 堪能
20894 | 2 | 勘能

This is structured like table rdng. Kanji text is expected to contain at least one kanji
character.

Table sens rows

select * from sens where entr=20894;
entr | sens | notes
------+------+-------
20894 | 1 |
20894 | 2 |
20894 | 3 |

There is a sens row for each sense in the entry. entr says which entry the sense
belongs to, sens disambiguates and orders the senses. entr and sens together constitute
the primary key. notes contains an optional text providing some information unique to
this sense that is intended to be displayed to users.

Table gloss rows

select * from gloss where entr=20894;
entr | sens | gloss | lang | txt
------+------+-------+------+--------------
20894 | 1 | 1 | 1 | proficient
20894 | 1 | 2 | 1 | skillful
20894 | 2 | 1 | 1 | satisfaction
20894 | 3 | 1 | 1 | fortitude

In this table we see the first two rows are glosses for the first sense, the second row is
a gloss for second sense, and the third row a gloss for the third sense. The lang values
are all 1, indicating english (from table kwlang). Because this database instance was
loaded from a JMdict_e file, there are no non-english glosses in it. Had it been loaded
from the full JMdict file, that would not be the case.

Stuart McGraw, 2020-09-05 Page 12 of 18

Table pos rows

select * from pos where entr=20894;
entr | sens | ord | kw
------+------+-----+----
20894 | 1 | 1 | 2
20894 | 2 | 2 | 17
20894 | 2 | 3 | 46
20894 | 3 | 4 | 17
20894 | 3 | 5 | 46

The pos table contains a list of part-of-speech keywords for each sense of an entry.
Again, entr identifies the entry and sens the sense. kw refers to the id column of table
kwpos. Looking in that table we see the 2 is "adj-na", 17 is "n", and 46 is "vs":

select * from kwpos where id in (2,17,46);
id | kw | descr
---+--------+---
 2 | adj-na | adjectival nouns or quasi-adjectives (keiyodoshi)
17 | n | noun (common) (futsuumeishi)
46 | vs | noun or participle which takes the aux. verb suru

Table fld rows

select * from fld where entr=20894;
entr | sens | ord | kw
------+------+-----+----
20894 | 3 | 1 | 1

fld is a keyword list table like pos: entr identifies the entry and sens the sense. kw
refers to the id column of table kwfld. Looking in that table we see the 1 is "Buddh".

Table rinf rows

select * from rinf where entr=20894;
entr | rdng | ord | kw
------+------+-----+----
20894 | 2 | 1 | 3

The rinf table contains a list of <re_inf> keywords for each reading of an entry. entr
identifies the entry and rdng the reading. kw refers to the id column of table kwrinf.
In this case, kw=3 indicates the rinf keyword, "ok" ("out-dated or obsolete kana
usage"). It applies only to reading 2 (かんのう).

The entry we are examining here has no data in the kinf table, but that table is the
same except its second column is kanj rather than rdng and the kw column references
table kwkinf rather than kwrinf.

Stuart McGraw, 2020-09-05 Page 13 of 18

Table restr rows

select * from restr where entr=20894;
entr | rdng | kanj
------+------+------
20894 | 1 | 2

Contains <re_restr> element info used when not all combinations of reading and kanji
are valid. entr identifies the entry, rdng and kanj identify a reading and kanji pair that
are not valid together. Note that this is the opposite of the JMdict XML where re_restr
elements identify valid pairs. Since only the pair たんのう / 勘能 is listed as invalid,
the combinations たんのう / 堪能, かんのう / 堪能, and かんのう / 勘能 are valid.

There is no special indicator for the "re_nokanji" tag that exists in JMdict XML --
simply having restr rows for every kanji in an entry paired with one of the readings in
sufficient to indicate that reading is "nokanji".

It is the application 's responsibility to generate “valid” restr pairs or the “nokanji”
flag from the existing data if that is how the information is to be presented.

Table freq rows

select * from freq where entr=20894;
 entr | rdng | kanj | kw | value
---------+------+------+----+-------
 1976847 | 1 | | 7 | 1
 1976847 | 1 | | 5 | 16
 1976847 | | 1 | 7 | 1
 1976847 | | 1 | 5 | 16

Table freq contains frequency-of-use information found in JMdict in the re_pri and
ke_pri elements. Each frequency of use datum applies to a reading or a kanji but not
both; thus one of the columns rdng or kanj will be NULL. The kw column refers to
the table kwfreq:

jmdict=# select * from kwfreq where id in (5,7);
 id | kw | descr
----+------+-------
 5 | nf |
 7 | news |

So the data shown tells us that the kanji-1 (堪能) and reading-1 (たんのう) both have
two frequency-of-use tags: “nf16” (5,16) and “news1” (7,1).

This entry has no dialect, source language, misc info, kinf info, etc, so a queries like
the following will return 0 rows:

select * from dial where entr=20894;
entr | sens | ord | kw
-----+------+-----+----
(0 rows)

Stuart McGraw, 2020-09-05 Page 14 of 18

3. Using SQL
This section describes how the table structures and relations previously discussed
affect the SQL you write to find and extract data. Since this document's purpose is to
show how the schema is organized, we use SQL to extract the raw data for entries
here. However the JMdictDB API has various functions to perform these tasks.

3.1. Retrieving an Entry's Data

If you are writing SQL as part of an application, extraction of data is easy in most
cases. That is because there is a library API that you can use that will extract all the
data needed and construct an object representation of the entry in application code. In
this case the library API will take care of the SQL for you, if you know the entries
you want. In the JMdictDB code, the Python library module jmdictdb/jdb.py
contains function entrList() which does this.

Even if you need to write the SQL yourself (perhaps because you are creating such an
API function) it is quite simple. Because all the tables have a column entr you need
to execute a set of SQL statements, one for each table, with a WHERE clause that
specifies the the entr values you are interested in. For example (in Perl) assuming that
the variables $id1 and $id2 contain the entry id numbers of two entries you are
interested in:

$dbh = DBI->connect("dbi:Pg:dbname=”jmdict”, PrintWarn=>0, RaiseError=>1)
$dbh->{pg_enable_utf8} = 1;
$sth = $dbh->execute (“SELECT * FROM entr WHERE id IN (?,?)”, [$id1,$id2]);
$entr = $sth->fetchall ();
$sth = $dbh->execute (“SELECT * FROM kanj WHERE entr IN (?,?)”, [$id1,$id2]);
$kanj = $sth->fetchall ();
$sth = $dbh->execute (“SELECT * FROM kinf WHERE entr IN (?,?)”, [$id1,$id2]);
$kinf = $sth->fetchall ();
$sth = $dbh->execute (“SELECT * FROM kfreq WHERE entr IN (?,?)”, [$id1,$id2]);
$kfreq = $sth->fetchall ();
$sth = $dbh->execute (“SELECT * FROM rdng WHERE entr IN (?,?)”, [$id1,$id2]);
$rdng = $sth->fetchall ();
$sth = $dbh->execute (“SELECT * FROM sens WHERE entr IN (?,?)”, [$id1,$id2]);
$sens = $sth->fetchall ();
[...]

or in Python (using the Psycopg2 Postgresql adapter):

Stuart McGraw, 2020-09-05 Page 15 of 18

dbh = conn = psycopg2.connect (database=”jmdict”)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
cursor = dbh.cursor()
cursor.execute (“SELECT * FROM entr WHERE id IN (?,?)”, [id1,id2])
entr = cursor.fetchall ()
cursor.execute (“SELECT * FROM kanj WHERE entr IN (?,?)”, [id1,id2])
kanj = cursor.fetchall ()
cursor.execute (“SELECT * FROM kinf WHERE entr IN (?,?)”, [id1,id2])
kinf = cursor.fetchall ()
cursor.execute (“SELECT * FROM kfreq WHERE entr IN (?,?)”, [id1,id2])
kfreq = cursor.fetchall ()
cursor.execute (“SELECT * FROM rdng WHERE entr IN (?,?)”, [id1,id2])
$dng = cursor.fetchall ()
cursor.execute (“SELECT * FROM sens WHERE entr IN (?,?)”, [id1,id2])
sens = cursor.fetchall ()
[...]

Having gotten all the needed rows for the entries $id1 and $id2 in variables $entr,
$kanj, etc., you can now use that data to build the objects representing the two entries.

3.2. Finding Entries

When you need to find information, the SQL becomes more complex. The basic rule
is that you need to join together those tables that have columns that are part of your
search criteria. Fortunately, because the relationship hierarchy is simple and fixed,
this too is usually quite straight forward. Since you will usually want to know which
entries meet the criteria, you will be interested in getting the entr.id values. In many
cases you may not even need a join.

For example, to find the entries that have a reading, “つける””, the following is
sufficient:

SELECT entr FROM rdng WHERE txt='つける';

Of course, if the criteria include information that is in different tables, a join or some
other combination of the tables is inevitable. To find the entries that contain both “つ
け” and “漬””, and have a sense with a PoS that is a noun:

SELECT DISTINCT r.entr
 FROM rdng r
 JOIN kanj k ON k.entr=r.entr
 JOIN pos p ON p.entr=k.entr
 WHERE r.txt LIKE '%つけ%'
 AND k.txt LIKE '%漬%'
 AND p.kw = 17;

“17” is the id number of the “noun” keyword in table kwpos.

If you need more than just the entr.id, say the entry's sequence number, then the entr
table will also need to be included:

Stuart McGraw, 2020-09-05 Page 16 of 18

SELECT DISTINCT e.seq
 FROM entr e
 JOIN rdng r ON r.entr=e.id
 JOIN kanj k ON k.entr=r.entr
 JOIN pos p ON p.entr=k.entr
 WHERE r.txt LIKE '%つけ%'
 AND k.txt LIKE '%漬%'
 AND p.kw != 17;

It is noteworthy that the sens table was not needed in the above two queries, even
though it is lies between entr and pos in the table hierarchy.

3.3. Views

The scripts that build that database include db/mkviews.sql which creates a number
of useful views and functions, including ones to provide a (somewhat simplified)
edict-ish textual summary of an entry, list valid and invalid reading-kanji
combinations based on table restr, present meta-information about entries such as the
number of kanji, readings and senses each has, and others. They are currently still in
too much flux to document yet, but will be included in a future version of this paper.

In the meantime, the comments in db/mkviews.sql may be useful.

3.4. More details

The definitional statements for the core JMdictDB tables described here are found in
the file db/entrobjs.sql. The file db/mktables.sql contains definitions for additional
supporting tables and other objects.

Stuart McGraw, 2020-09-05 Page 17 of 18

 Notes

[1] http://www.csse.monash.edu.au/~jwb/edict_doc.html

[2] http://www.edrdg.org/~smg/

[3] The JMdict file is available in two forms: an English-only gloss version
(ftp://ftp.cc.monash.edu.au/pub/nihongo/JMdict_e.gz), and a multi-lingual gloss version (ftp://ftp.cc.monash.edu.au/
pub/nihongo/JMdict.gz) that is a superset of the English-only version. The JMdict database schema and tools
support both versions. However, the non-English glosses in the multi-lingual version were merged in from other
non-JMdict project files and the integration leaves something to be desired so most of the JMdictDB development
work uses the English-only version.

[4] http://www.edrdg.org/~smg/. The JMdictDB source code licensed under the GPL and is available for download at
this URL.

[5] http://www.postgresql.org/. At time of writing, JMdictDB uses version 10.

[6] The schema.png file is distributed with the JMdictDB source code, or at
http://www.edrdg.org/~smg/jmdict/schema.png

[7] The name “gloss” for this table is a misnomer but it is too much work to change at this point. In addition to glosses
it contains several types of non-gloss translational entities such as literal and explanational translations. The ginf
column value indicates the type of translational entity in each row.

[8] A Postgtresql sequence is an object that supplies sequential numbers when one is requested. It is not related to
(other than being used to generate them) the “sequence” numbers used in JMdictDB database entries.

[9] Prior to April 2008, comments were parsed and those that matched patterns for “merged entry” comments were
turned into actual deleted entries in the database. However, recent “merged entry” comments identify the mergee by
kanji rather than sequence number and will require a post-load pass to resolve, similar to the way xrefs are
processed. The program for this has not been written yet (as of May 2008) and currently, all comments are
effectively ignored.

http://www.edrdg.org/~smg/
http://www.edrdg.org/~smg/
http://www.edrdg.org/~smg/
ftp://ftp.cc.monash.edu.au/pub/nihongo/JMdict.gz
ftp://ftp.cc.monash.edu.au/pub/nihongo/JMdict.gz
ftp://ftp.cc.monash.edu.au/pub/nihongo/JMdict_e.gz
http://www.edrdg.org/~smg/
http://www.jb.something/

	Notes
	1. Schema Description
	1.1. Parent/Child Tables and Primary/Foreign keys.
	1.2. Keyword Tables
	1.3. Keyword Lists
	1.4. Restrictions: restr, stagr, stagk
	1.5. Frequency of Use: ke_pri, re_pri
	1.6. Cross-references: xref
	1.7. Unresolved cross-references: xresolv
	1.8. Corpora and Sequence Numbers
	1.9. XML Round-tripping

	2. An Example Entry
	3. Using SQL
	3.1. Retrieving an Entry's Data
	3.2. Finding Entries
	3.3. Views
	3.4. More details

